Основные представители простых белков и их свойства. Что такое быстрые и медленные белки? Нюансы употребления быстрых и медленных белков

В зависимости от химического состава белки де­лятся на две группы: простые и сложные. Простые белки со­стоят только из аминокислот. В сложные белки, помимо ами­нокислот, входит небелковый компонент, называемый простетической группой. В свою очередь внутри каждой из этих групп белки подразделяются на подгруппы. Простые белки условно классифицируют в соответствии с их растворимос­тью в различных веществах, а сложные белки делят на осно­ве химической природы небелковой части молекулы.

Простые белки

К простым белкам относятся альбумины, глобулины, про-ламины, глютелины, протамины, гистоны, протеиноиды.

Альбумины. Белки этой подгруппы имеют небольшую мо­лекулярную массу (15 000-70 000 Да); ихфтносят к кислым белкам из-за большого содержания глутаминовой кислоты. Альбумины сильно гидратированы, они хорошо растворяют­ся в воде; из водных растворов осаждаются при насыщении нейтральными солями, например сульфатом аммония. Аль­бумины обладают высокой адсорбционной способностью. Так, альбумины плазмы крови благодаря неспецифической адсорб­ции различных веществ выполняют физиологически важную транспортную функцию.

Альбумины широко распространены в природе. В плаз­ме крови человека, куриных яйцах они составляют до 50 % всех белков. Богаты альбуминами молоко и молочные про­дукты.

Глобулины, Эти белки крупнее, чем альбумины; их моле­кулярная масса превышает 100 000 Да. Глобулины растворя­ются в слабых растворах.различных солей (в воде нераствори­мы). При 50-процентном насыщении раствора сульфатом аммония выпадают в осадок. Глобулины являются слабокис­лыми и нейтральными белками. Они составляют большую часть белков семян, особенно бобовых и масличных культур. Мно­го глобулинов в крови и других биологических жидкостях. К этой подгруппе относятся: белок крови - фибриноген, а также белок семян гороха - легумин, фасоли - фазеолин, коноп­ли - эдестин.

Альбумины и глобулины представляют собой очень раз­нообразные группы белков, выполняющих различные функ­ции в живых организмах.

Проломаны. Белки, хорошо растворимые в 70-процентном этаноле. Проламины нерастворимы в воде и солевых растворах. В своем составе содержат много пролина и глутаминовой кисло­ты. Проламины есть в злаках, где они выполняют роль запасных зеществ. Каждый из них имеет специфическое название по тому источнику, из которого они были выделены: глиадин - белок т^еницы и ржи, гордеин - ячменя, зеин - кукурузы.

Глютелины. Это белки растений, нерастворимые в воде, растворах солей, этиловом спирте. Они хорошо растворяются з слабых щелочах (0,2-2 %). Глютелины содержат больше ар­гинина и меньше пролина, чем Проламины. Комплекс щело-черастворимых белков семян пшеницы называется глютени-ном, риса - оризенином.

Фракционный состав белков зерна обусловливает техно­логические свойства пшеничной, ржаной, кукурузной, ов-:яной муки и разных круп. Белки пшеницы хорошо набухают и образуют связную эластичную массу - клейковину, основ­ную часть которой составляют глиадин и глютенин. Менее эластичная, хотя и связная масса получается из белков ячме­ня. Белковые вещества кукурузы, овса, риса, гречихи слабо набухают и не способны образовывать вязкое тесто.

Протамины. Это низкомолекулярные белки (молекуляр­ная масса до 12 000 Да), содержащие до 80 % основных ами­нокислот, главным образом аргинина. Следовательно, Прота­мины обладают резко выраженными основными свойствами, растворимы в слабых кислотах. Молекулы этих белков пред­ставляют собой поливалентный катион и легко реагируют с отрицательно заряженными веществами, например нуклеи­новыми кислотами.

Протамины широко распространены в природе, особенно их много в половых клетках рыб, млекопитающих и человека. Протамины образуют прочный комплекс с молекулами ДНК и таким образом защищают их от неблагоприятных воздействий.

Гистоны. Белки с низкой молекулярной массой (12 000- 24 000 Да) и резко выраженными основными свойствами. Растворимы в слабых кислотах. Гистоны присутствуют главным образом в ядрах клеток растений и животных. Основные их функции - структурная и регуляторная. Гистоны имеют большой положительный заряд, что позволяет им электростатически взаимодействовать с ДНК и стабилизировать ее структуру. Регуляторная функция гистонов заключается в их способности блокировать передачу генетической информа­ции от ДНК к РНК.

Протеиноиды. Малорастворимые фибриллярные белки опор­ных тканей (костей, хрящей, связок, сухожилий, волос и т. д.). Для них характерно высокое содержание серы. К протеиноидам относятся: фиброин - белок шелка; кератины - белки волос, рогов, копыт; коллагены - белки соединительных тканей.

Сложные белки

Сложные белки можно рассматривать как молекулярные комплексы двух веществ. Небелковая часть (простетическая группа) прочно соединяется с белком ковалентными или нековалентными связями, поэтому такие комплексы функ­ционируют как единое целое.

Липопротеины. Простетическая группа в этих белках пред­ставлена липидами (свободные жирные кислоты, триглице-рины, фосфолипиды, холестериды). Липопротеины широко распространены в природе. Они содержатся во всех клеточ­ных мембранах, плазме крови, мозге, молоке, яйцах и т. п.

Свободные Липопротеины (не входящие в биомембра­ны) выполняют транспортную функцию. Благодаря наличию полярных гидрофильных групп они растворимы в водной среде и способны переносить поступающие в кровь липиды к раз­личным органам и тканям организма.

Фосфопротеины. У этих белков остаток ортофосфорной кислоты соединен эфирной связью с гидроксильной груп­пой серина или треонина. К фосфопротеинам относятся мно­гие белки, играющие важную роль в питании растущего орга­низма, в частности, белок молока - казеиноген, яичного желтка - вителлин, икры рыб - ихтулин. Значительное их количество содержится в мозге. Фосфопротеины выполняют множество функций в живых организмах. Присоединение фос­фора к белку (фосфорилирование) меняет активность послед­него. Фосфорилирование и дефосфорилирование белков ре­гулирует их функционирование в клетке.

Гликопротеины. Простетические группы гл и коп роте и нов представлены углеводами и их производными. Углеводный компонент сообщает молекуле белка новые свойства, в том числе высокую специфичность. В отличие от протеинов для гликопротеинов характерна терм о стабильность: они выдер­живают и низкие и высокие температуры без изменения фи­зико-химических свойств. Гликопротеины с трудом перева­риваются протеолитическими ферментами.

Углеводсодержащие белки находятся во всех организмах. Они играют важную биологическую роль: осуществляют та­кие функции, как транспорт различных веществ, свертывае­мость крови, поддержание иммунитета (защита организма от инфицирующих бактерий и вирусов) и др. Представителями гликопротеинов являются муцины, которые обусловливают высокую вязкость слюны, что облегчает прохождение пищи по пищеводу. Муцины защищают слизистую оболочку желуд­ка и кишечника от воздействия собственных ферментов и плохо измельченной пищи.

Хромопротеины. Это сложные белки, у которых небелко­вую часть представляют различные окрашенные соединения, откуда и произошло их название (от греч. сНгота - краска). Среди хромопротеинов различают гемопротеины (содержа­щие в качестве простетической группы железо), порфирины (содержащие магний), флавопротеины (содержащие произ­водные изоалаксазина). Хромопротеины выполняют ряд уни­кальных функций, участвуя в важнейших процессах жизне­деятельности: фотосинтезе, дыхании, транспорте кислорода и оксида углерода, окислительно-восстановительных реакци­ях, с вето во с приятии и др. К простетическим группам хро­мопротеинов относятся порфириновое кольцо, флавиновые нуклеотины и т. д. К хромо протеи нам принадлежат хлорофилл, гемоглобин, многие ферменты - каталаза, пероксидаза, де-гидрогеназа и др.

Нуклеопротеины. Белки, связанные с нуклеиновыми кис­лотами. Они входят в состав любой клетки и играют важную биологическую роль, участвуя в образовании структурных кле­точных элементов и передаче наследственной информации.

6. БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ

Белки - важнейшие компоненты питания. Спо­собность белка выполнять функцию питания характеризует его биологическую ценность. Эффективность потребления белковых веществ человеком определяется двумя основными факторами: сбалансированностью содержания незаменимых аминокислот в белке и его усвояемостью. Если не удовлет­воряется потребность в одной из незаменимых аминокис­лот, то ограничивается использование других, и, следова­тельно, снижается ценность белка в целом. Незаменимая аминокислота, которая находится в белке в минимальном количестве, называется лимитирующей аминокислотой, так как она в наибольшей степени уменьшает биологическую ценность данного белка.

Обогащение пищевых белковых продуктов недостающи­ми аминокислотами применяется в рационе питания челове­ка в исключительных случаях. Однако при содержании жи­вотных добавление синтетических аминокислот к кормам является обычным делом. Подобным образом во всем мире готовят кормовые смеси для домашних птиц, свиней, коров. Обогащение кормов основными лимитирующими кислота­ми - метионином и лизином позволяет более экономно рас­ходовать кормовые смеси. Известно, что добавки этих амино­кислот улучшают утилизацию белка животными примерно на 20 %.

Обычно биологическая ценность белка выражается в от­носительных величинах. Она представляет собой отношение исследуемого параметра данного белка к подобному же па-рамегру «идеального» белка. В качестве последнего исполь­зуют казеин молока, белок яиц, смесь мышечных белков, которые легко перевариваются и содержат незаменимые ами­нокислоты в соотношениях, близких к эталонным. Биологи­ческая ценность данного белка в сравнении с эталонными показывает, насколько он способен удовлетворять потреб­ности организма в аминокислотах. Для оценки какого-либо белка или пищевого продукта необходимы данные о содер­жании в нем отдельных аминокислот, т. е. аминокислотный состав.

Значительная часть растительных белков по своему ами­нокислотному составу и биологической ценности близка к животным. Однако белки семян большинства сортов зерно­вых дефицитны по двум (рис, овес), а чаще по трем и четы­рем (пшеница, кукуруза и др.) незаменимым аминокисло­там. Основной лимитирующей аминокислотой белка зерновых культур является лизин. Лимитирующие аминокислоты бел­ков зерновых различны у семян разных культур: у пшеницы, риса и ржи - треонин, у кукурузы - триптофан и т. д. Белки, бобовых культур отличаются лучшей сбалансированностью

У животных белков дефицит незаменимых аминокислот выражен слабо. Некоторым из них (белки молока, мяса, суб­продуктов) свойственен недостаток серосодержащих амино­кислот. В целом для животных белков более характерно избы­точное по сравнению с потребностями организма содержание ряда незаменимых аминокислот.

В питании большей части населения земного шара отме­чается определенный дефицит трех незаменимых аминокис­лот: лизина, триптофана и метионина. Различный аминокис­лотный состав растительных и животных белков позволяет повысить их биологическую ценность при потреблении необ­ходимого количества разнообразной белковой пищи. Только такое питание можно назвать полноценным.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ:

1.Что такое белки и каковы их функции в организме?

2.Перечислите свойства белков.

3.Каково структурное и функциональное значение гидрофоб­
ных, кислых и основных, сульфидрильных групп в белках?

4.Белки подвергли сжиганию, после чего в минерализате об­
наружили железо. Какие белки содержит этот элемент?

5.Какие классификации аминокислот вам известны?

6.Что такое незаменимые аминокислоты и в каких продуктах
они содержатся?

7.В смеси аминокислот после гидролиза казеина с помощью
соответствуюших реактивов обнаружено наличие гидрофиль­
ных групп. Какие аминокислоты содержат их? Напишите их
формулы.

8.К водному раствору аминокислот добавлен универсальный
индикатор. Определена кислая реакция. Каким аминокисло­
там свойственны кислые реакции? Напишите их формулы.

9.С помощью соответствующих реактивов в растворе белка об­
наружена сера. Какие аминокислоты се содержат? Напишите
их формулы.

10.Расскажите о классификации белков. От чего зависит биологическая ценность белков?


ГЛАВА ХИМИЯ НУКЛЕИНОВЫХ

Кислот

Общая характеристика

Нуклеиновые кислоты были открыты в 1868 году швейцарским химиком Ф. Мишером. Ученый выделил эти ве­щества из ядер клеток и назвал их нуклеином (от лат, гшс1еиз - ядро). Однако более подробное изучение этих соединений было проведено лишь в конце 40-х годов нашего столетия. Боль­шой вклад в расшифровку состава и роли нуклеиновых кис­лот внесли химики П. Левин, Э. Чаргафф, Дж. Уотсон, Ф. Крик, Б. В. Кедровский, А. М. Белозерский, А. С. Спирин и другие.

Нуклеиновые кислоты - это класс полимеров, ответ­ственных за хранение и передачу генетической информации, а также ее реализацию в процессе синтеза клеточных белков. Они универсальные компоненты всех живых организмов. Нук­леиновые кислоты представляют собой вещества белого цве­та, в свободном состоянии плохо растворимые в воде, но хорошо - в виде солей и щелочных металлов.

Эти соединения обладают высокой молекулярной мас­сой (миллионы Да), содержат около 35 % азота и 10 % фос­фора, отличаются резко выраженными кислотными свойства­ми (за счет фосфорной кислоты) и при физиологическом значении рН несут высокий отрицательный заряд, вследствие чего подвижны в электрическом поле.


Похожая информация.


Одно из определений жизни звучит следующим образом: «Жизнь есть способ существования белковых тел». На нашей планете все без исключения организмы содержат такие органические вещества, как протеины. В данной статье будут описаны простые и сложные белки, определены различия в молекулярном строении, а также рассмотрены их функции в клетке.

Что такое белки

С точки зрения биохимии - это высокомолекулярные органические полимеры, мономерами которых являются 20 видов различных аминокислот. Они соединяются между собой ковалентными химическими связями, иначе называемые пептидными. Так как мономеры белка являются амфотерными соединениями, они содержат как аминогруппу, так и карбоксильную функциональную группы. Химическая связь СО-NH возникает между ними.

Если полипептид состоит из остатков аминокислотных звеньев, он образует простой белок. Молекулы полимера, дополнительно содержащие ионы металлов, витамины, нуклеотиды, углеводы - это сложные белки. Далее мы рассмотрим пространственное строение полипептидов.

Уровни организации белковых молекул

Они представлены четырьмя различными конфигурациями. Первая структура - линейная, она наиболее проста и имеет вид полипептидной цепи, во время её спирализации происходит образование дополнительных водородных связей. Они стабилизируют спираль, которая называется вторичной структурой. Третичный уровень организации имеют простые и сложные белки, большинство растительных и животных клеток. Последняя конфигурация - четвертичная, возникает при взаимодействии нескольких молекул нативной структуры, объединенных коферментами, именно такое строение имеют сложные белки, выполняющие в организме разнообразные функции.

Разнообразие простых белков

Эта группа полипептидов немногочисленна. Их молекулы состоят только из аминокислотных остатков. К протеинам относятся, например, гистоны и глобулины. Первые представлены в структуре ядра и объединены с молекулами ДНК. Вторая группа - глобулины - считаются главными компонентами плазмы крови. Такой белок, как гамма-глобулин, выполняет функции иммунной защиты и является антителом. Эти соединения могут образовывать комплексы, в состав которых входят сложные углеводы и белки. Такие фибриллярные простые белки, как коллаген и эластин, входят в состав соединительной ткани, хрящей, сухожилий, кожи. Их главные функции - строительная и опорная.

Белок альбумин выполняет запасающую функцию (например, белок куриных яиц). В эндосперме семян злаковых растений - ржи, риса, пшеницы - накапливаются молекулы белков. Они называются клеточными включениями. Эти вещества использует зародыш семени в начале своего развития. Кроме того, высокое содержание белка в зерновках пшеницы является очень важным показателем качества муки. Хлеб, испеченный из муки богатой клейковиной, имеет высокие вкусовые качества и более полезен. Клейковину содержат так называемые твердые сорта пшеницы. В плазме крови глубоководных рыб содержатся белки, препятствующие их гибели от холода. Они обладают свойствами антифриза, предотвращая гибель организма при низких температурах воды. С другой стороны, в составе клеточной стенки живущих в геотермальных источниках, содержатся белки, способные сохранять свою природную конфигурацию (третичную или четвертичную структуру) и не денатурировать в интервале температур от +50 до + 90 °С.

Протеиды

Это сложные белки, для которых характерно большое разнообразие в связи с различными функциями, выполняемыми ими. Как отмечалось ранее, эта группа полипептидов, кроме белковой части, содержит простетическую группу. Под влиянием различных факторов, таких как высокая температура, соли тяжелых металлов, концентрированные щелочи и кислоты, сложные белки могут изменять свою пространственную форму, упрощая её. Это явление называется денатурацией. Строение сложных белков нарушается, водородные связи рвутся, а молекулы теряют свои свойства и функции. Как правило, денатурация носит необратимый характер. Но у некоторых полипептидов, выполняющих каталитическую, двигательную и сигнальную функции, возможна ренатурация - восстановление природной структуры протеида.

Если действие дестабилизирующего фактора происходит продолжительное время, белковая молекула разрушается полностью. Это приводит к разрыву пептидных связей первичной структуры. Восстановить протеин и его функции уже невозможно. Такое явление называется деструкцией. Примером может служить варка куриных яиц: жидкий белок - альбумин, находящийся в третичной структуре, полностью разрушается.

Биосинтез белков

Еще раз напомним, что в состав полипептидов живых организмов входит среди которых есть незаменимые. Это лизин, метионин, фенилаланин и т. д. Они поступают в кровь из отделов тонкой кишки после расщепления в ней белковых продуктов. Чтобы синтезировать заменимые аминокислоты (аланин, пролин, серин), грибы и животные используют азотсодержащие соединения. Растения, являясь автотрофами, самостоятельно образуют все необходимые составные мономеры, представляющие сложные белки. Для этого в реакциях ассимиляции у них используются нитраты, аммиак или свободный азот. У микроорганизмов некоторые виды обеспечивают себя полным аминокислотным набором, а у других синтезируются только некоторые мономеры. Этапы биосинтеза белков протекают в клетках всех живых организмов. В ядре происходит транскрипция, а в цитоплазме клетки - трансляция.

Первый этап - синтез предшественника иРНК происходит при участии фермента РНК-полимеразы. Он разрывает водородные связи между цепями ДНК, и на одной из них по принципу комплиментарности собирает молекулу пре-иРНК. Она подвергается слайсингу, то есть созревает, и далее выходит из ядра в цитоплазму, образуя матричную рибонуклеиновую кислоту.

Для осуществления второго этапа необходимо наличие специальных органелл - рибосом, а также молекул информационных и транспортных рибонуклеиновых кислот. Еще одним важным условием является наличие молекул АТФ, так как реакции к которым принадлежит биосинтез белков, происходят с поглощением энергии.

Ферменты, их строение и функции

Это большая группа белков (около 2000), выполняющих роль веществ, влияющих на скорость протекания биохимических реакций в клетках. Они могут быть простыми (трепсин, пепсин) или сложными. Сложные белки состоят из кофермента и апофермента. Специфичность самого белка относительно соединений, на которые он воздействует, определяет кофермент, а активность протеидов наблюдается только в том случае, когда белковый компонент связан с апоферментом. Каталитическая активность фермента зависит не от всей молекулы, а только от активного центра. Его строение соответствует химической структуре катализируемого вещества по принципу «ключ-замок», поэтому действие ферментов строго специфично. Функции сложных белков заключаются как в участии в метаболических процессах, так и в использовании их в качестве акцепторов.

Классы сложных белков

Они были разработаны биохимиками, исходя из 3 критериев: физико-химических свойств, функциональных особенностей и специфики структурных признаков протеидов. К первой группе относятся полипептиды, различающиеся электрохимическими свойствами. Они делятся на основные, нейтральные и кислые. По отношению к воде белки могут быть гидрофильными, амфифильными и гидрофобными. Ко второй группе относятся ферменты, которые были рассмотрены нами ранее. Третья группа включает полипептиды, различающиеся химическим составом хромопротеиды, нуклеопротеиды, металлопротеиды).

Рассмотрим свойства более подробно. Так, например, кислый белок, содержит 120 аминокислот и является универсальным. Он находится в белоксинтезирующих органеллах, как прокариотических, так и эукариотических клеток. Еще один представитель этой группы - состоит из двух цепей, связанных ионом кальция. Он входит в состав нейронов и нейроглии - опорной ткани нервной системы. Общее свойство всех кислых белков - это высокое содержание двухосновных карбоновых кислот: глутаминовой и аспарагиновой. К щелочным белкам относятся гистоны - протеины, входящие в состав нуклеиновых кислот ДНК и РНК. Особенностью их химического состава является большое количество лизина и аргинина. Гистоны вместе с хроматином ядра образуют хромосомы - важнейшие структуры наследственности клеток. Эти белки участвуют в процессах транскрипции и трансляции. Амфифильные протеины широко представлены в клеточных мембранах, образуя липопротеиновый бислой. Таким образом, изучив выше рассмотренные группы сложных белков, мы убедились в том, что их физико-химические свойства обусловлены строением белкового компонента и простетических групп.

Некоторые сложные белки клеточных мембран способны узнавать различные химические соединения, например антигены, и реагировать на них. Это сигнальная функция протеидов, она очень важна для процессов избирательного поглощения веществ, поступающих из внешней среды, и для её защиты.

Гликопротеины и протеогликаны

Они являются сложными белками, отличающимися между собой биохимическим составом простетических групп. Если химические связи между белковым компонентом и углеводной частью - ковалентно-гликозидные, такие вещества называются гликопротеинами. Апофермент у них представлен молекулами моно- и олигосахаридов, примерами таких белков служат протромбин, фибриноген (белки, участвующие в свертывании крови). Кортико- и гонадотропные гормоны, интерфероны, мембранные ферменты также являются гликопротеинами. В молекулах протеогликанов белковая часть составляет всего 5%, остальное приходится на простетическую группу (гетерополитсахарид). Обе части соединены гликозидной связью группы ОН-треонина и аргинина и группы NH₂-глутамина и лизина. Молекулы протеогликанов играют очень важную роль в водно-солевом обмене клетки. Ниже представлена таблица сложных белков, изученных нами.

Металлопротеиды

Эти вещества содержат в составе своих молекул ионы одного или нескольких металлов. Рассмотрим примеры сложных белков, относящихся к вышеназванной группе. Это прежде всего ферменты, такие как цитохромоксидаза. Она располагается на кристах митохондрий и активизирует Феррин и трансферрин - протеиды, содержащие ионы железа. Первый депонирует их в клетках, а второй является транспортным белком крови. Еще один металлопротеид - альфаамелаза, она содержит ионы кальция, входит в состав слюны и сока поджелудочной железы, участвуя в расщеплении крахмала. Гемоглобин является как металлопротеидом, так и хромопротеидом. Он выполняет функции транспортного белка, перенося кислород. В результате образуется соединение оксигемоглобин. При вдыхании монооксида карбона, иначе называемого угарным газом, его молекулы образуют с гемоглобином эритроцитов очень стойкое соединение. Оно быстро разносится по органам и тканям, вызывая отравление клеток. В итоге при длительном вдыхании угарного газа наступает смерть от удушья. Гемоглобин частично переносит и углекислый газ, образовавшийся в процессах катаболизма. С током крови диоксид карбона поступает в легкие и почки, а из них - во внешнюю среду. У некоторых ракообразных и моллюсков транспортным белком, переносящим кислород, служит гемоцианин. Вместо железа он содержит ионы меди, поэтому кровь животных имеет не красный, а голубой цвет.

Функции хлорофилла

Как мы уже упоминали ранее, сложные белки могут образовывать комплексы с пигментами - окрашенными органическими веществами. Их цвет зависит от хромоформных групп, которые избирательно поглощают определённые спектры солнечного света. В клетках растений есть зеленые пластиды - хлоропласты, содержащие пигмент хлорофилл. В его состав входят атомы магния и фитол. Они связаны с белковыми молекулами, а сами хлоропласты содержат тилакоиды (пластинки), или мембраны, связанные в стопки - граны. В них находятся фотосинтезирующие пигменты - хлорофиллы - и дополнительные каротиноиды. Здесь же находятся все ферменты, используемые в фотосинтетических реакциях. Таким образом, хромопротеиды, к которым относится и хлорофилл, выполняют важнейшие функции в обмене веществ, а именно в реакциях ассимиляции и диссимиляции.

Вирусные белки

Их содержат представители неклеточных форм жизни, входящие в Царство Вира. Вирусы не имеют собственного белоксинтезирующего аппарата. Нуклеиновые кислоты, ДНК или РНК, могут вызывать синтез собственных частиц самой клеткой, инфицированной вирусом. Простые вирусы состоят только из белковых молекул, компактно собранных в структуры спиральной или многогранной формы, как, например, вирус табачной мозаики. Сложные вирусы имеют дополнительную мембрану, составляющую часть плазматической оболочки клетки-хозяина. В неё могут входить гликопротеиды (вирус гепатита В, вирус оспы). Основная функция гликопротеидов — это узнавание специфических рецепторов на мембране клетки хозяина. В состав дополнительных вирусных оболочек входят и белки-ферменты, обеспечивающие редупликацию ДНК или транскрипцию РНК. Исходя из вышесказанного, можно сделать следующий вывод: белки оболочек вирусных частиц имеют специфическое строение, зависящее от мембранных белков клетки-хозяина.

В данной статье нами была дана характеристика сложных белков, изучены их строение и функции в клетках различных живых организмов.

Основана на различиях по составу или по форме.

По составу белки делят на две группы:

    Простые белки (протеины) состоят только из аминокислот: протамины и гистоны обладают основными свойствами и входят в состав нуклеопротеидов. Гистоны участвуют в регуляции активности генома. Проламины и глютелины – белки растительного происхождения, составляют основную массу клейковины. Альбумины и глобулины – белки животного происхождения. Богаты ими сыворотка крови, молоко, яичный белок, мышцы.

    Сложные белки (протеиды = протеины) содержат небелковую часть – простетическую группу. Если простетической группой является пигмент (гемоглобин, цитохромы), то это хромопротеиды. Белки, связанные с нуклеиновыми кислотами – нуклеопротеиды. Липопротеины – связаны с каким – либо липидом. Фосфопротеиды – состоят из белка и лабильного фосфата. Их много в молоке, в ЦНС, икре рыб. Гликопротеиды связаны с углеводами и их производными. Металлопротеины – белки, содержащие негеминовое железо, а также образующие координационные решетки с атомами металлов в составе белков – ферментов.

По форме различают

Глобулярные белки – это плотно свернутые полипептидные цепи сферической формы, для них важна третичная структура. Хорошо растворимы в воде, в разбавленных растворах кислот, оснований, солей. Глобулярные белки выполняют динамические функции. Например, инсулин, белки крови, ферменты.

Фибриллярные белки – молекулы вторичной структуры. Они построены из параллельных, сравнительно сильно растянутых пептидных цепей, вытянутой формы, собранные в пучки, образуют волокна (кератин ногтей, волос, паутины, шелка, коллаген сухожилий). Выполняют преимущественно структурную функцию.

Функции белков:

    Строительная – белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран, шерсти, волос, сухожилий, стенок сосудов и т.д.

    Транспортная – некоторые белки способны присоединять к себе различные вещества и переносить (доставлять) их из одного места клетки в другое, и к различным тканям и органам тела. Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ. В состав клеточных мембран входят особые белки, обеспечивающие активный и строго избирательный перенос некоторых веществ и ионов из клетки и в клетку – осуществляется обмен с внешней средой.

    Регуляторная функция – принимают участие в регуляции обмена веществ. Гормоны влияют на активность ферментов, замедляя или ускоряя обменные процессы, изменяют проницаемость клеточных мембран, поддерживают постоянство концентрации веществ в крови и клетках, участвуют в процессе роста. Гормон инсулин регулирует уровень сахара в крови путем повышения проницаемости клеточных мембран для глюкозы, способствует синтезу гликогена, увеличивает образование жиров из углеводов.

    Защитная функция = Иммунологическая. В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки - антитела, способные связывать и обезвреживать их. Синтез иммуноглобулинов происходит в лимфоцитах. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

    Двигательная функция. Сократительные белки обеспечивают движение клеток и внутриклеточных структур: образовании псевдоподий, мерцании ресничек, биении жгутиков, сокращении мышц, движении листьев у растений.

    Сигнальная функция. В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

    Запасающая функция. В организме могут откладываться про запас некоторые вещества. Например, при распаде гемоглобина железо не выводится из организма, а сохраняется в селезенке, образуя комплекс с белком ферритином. К запасным относятся белки яйца, молока.

    Энергетическая функция. При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Распад идет сначала до аминокислот, а потом – до воды, аммиака и углекислого газа. Однако в качестве источника энергии белки используются тогда, когда израсходованы жиры и углеводы.

    Каталитическая функция. Ускорение биохимических реакций под действием белков - ферментов.

    Трофическая. Питают зародыш на ранних стадиях развития и запасают биологически ценные вещества и ионы.

Липиды

Большая группа органических соединений, являющихся производными трехатомного спирта глицерина и высших жирных кислот. Поскольку в их молекулах преобладают неполярные и гидрофобные структуры, то они нерастворимы в воде, а растворимы в органических растворителях.

Белок — это макромолекула, которыми изобилуют клетки. Каждый из них выполняет определенную функцию, но не все они одинаковы, поэтому имеют определенную классификацию, которая определяет различные типы белков. Эта классификация является полезной для рассмотрения.

Определение белков: Что такое белок?

Белок, от греческого «πρωτεῖος», являются биомолекулами, образованными линейными цепочками аминокислот.

Благодаря своим физико-химическим свойствам белки можно классифицировать как простые белки (голопротеиды), образованные только аминокислотами или их производными; конъюгированные белки (гетеропротеиды), образованные аминокислотами, сопровождающимися различными веществами, и производными белками, веществами, образованными денатурацией и расщеплением предыдущих.

Белки необходимы для жизни, особенно из-за их пластической функции (они составляют 80% обезвоженной протоплазмы каждой клетки), но также из-за их биорегуляторных функций (они являются частью ферментов) и защиты (антитела являются белками).

Белки играют жизненно важную роль для жизни и являются самыми универсальными и разнообразными биомолекулами. Они необходимы для роста организма и выполняют огромное количество различных функций, среди которых:

  • Строительство тканей. Это самая важная функция белка (например: коллаген)
  • Контрабильность (актин и миозин)
  • Ферментативный (например: сукраза и пепсин)
  • Гомеостатик: сотрудничает в поддержании рН (поскольку они действуют как химический буфер)
  • Иммунологические (антитела)
  • Рубцевание ран (например, фибрин)
  • Защитные (например, тромбин и фибриноген)
  • Трансдукция сигнала (например, родопсин).

Белки образованы аминокислотами. Белки всех живых существ определяются главным образом их генетикой (за исключением некоторых антимикробных пептидов не рибосомального синтеза), то есть генетическая информация в значительной степени определяет, какие белки представляют клетка, ткань и организм.

Белки синтезируются в зависимости от того, как регулируются гены, которые их кодируют. Поэтому они восприимчивы к сигналам или внешним факторам. Набор белков, выраженный в данном случае, называется протеомом.

Пять основных свойств, которые позволяют существование и обеспечить функцию белков:

  1. PH-буфер (известный как буферный эффект): они действуют как буферы рН из-за их амфотерного характера, то есть они могут вести себя как кислоты (донорские электроны) или как основания (прием электронов).
  2. Электролитическая способность: определяется методом электрофореза, аналитическим методом, в котором, если белки переносятся на положительный полюс, это происходит потому, что их молекула имеет отрицательный заряд и наоборот.
  3. Специфичность: каждый белок имеет определенную функцию, которая определяется его первичной структурой.
  4. Стабильность: белок должен быть стабильным в среде, где он выполняет свою функцию. Для этого большинство водных белков создают упакованное гидрофобное ядро. Это связано с периодом полураспада и оборотом белка.
  5. Растворимость: необходимо сольватировать белок, который достигается путем воздействия на поверхность белка остатков с одинаковой степенью полярности. Он поддерживается до тех пор, пока присутствуют сильные и слабые связи. Если температура и рН увеличиваются, растворимость теряется.

Денатурация белков

Если изменения в рН, изменения концентрации, молекулярное возбуждение или внезапные изменения температуры происходят в белковом растворе, растворимость белков может быть уменьшена до точки осаждения. Это связано с тем, что связи, которые поддерживают глобулярную конформацию, разрушаются, а белок принимает нитевидную конформацию. Таким образом, слой молекул воды не полностью покрывает молекулы белка, которые имеют тенденцию связываться друг с другом, приводя к образованию крупных частиц, которые выпадают в осадок.

Кроме того, его биокаталитические свойства исчезают при изменении активного центра. Белки, находящиеся в этом состоянии, не могут выполнять деятельность, для которой они были разработаны, короче говоря, они не функционируют.

Этот вариант конформации называется денатурацией. Денатурация не влияет на пептидные связи: при возвращении в нормальные состояния может произойти, что белок восстанавливает примитивную конформацию, которая называется ренатурацией.

Примерами денатурации являются вырезание молока в результате денатурации казеина, осаждение яичного белка, когда овальбумин денатурируется действием тепла или фиксацией расчесанных волос в результате воздействия тепла на кератины волос.

Классификация белков

Согласно форме

Волокнистые белки: они имеют длинные полипептидные цепи и атипичную вторичную структуру. Они нерастворимы в воде и в водных растворах. Некоторыми примерами этого являются кератин, коллаген и фибрин.

Шаровидные белки: характеризуются складыванием своих цепей в плотную или компактную сферическую форму, оставляя гидрофобные группы в белковой и гидрофильной группах наружу, что делает их растворимыми в полярных растворителях, таких как вода. Большинство ферментов, антител, некоторых гормонов и транспортных белков являются примерами глобулярных белков.

Смешанные белки: они имеют фибриллярную часть (обычно в центре белка) и другую шаровидную часть (в конце).

Согласно химическому составу

Простые белки или голопротеиды: при их гидролизе производятся только аминокислоты. Примерами таких веществ являются инсулин и коллаген (шаровидные и волокнистые), альбумины.

Конъюгированные или гетеропротеины: эти белки содержат полипептидные цепи и протезную группу. Неаминокислотная часть называется протезной группой, это могут быть нуклеиновая кислота, липид, сахар или неорганический ион. Примерами этого являются миоглобин и цитохром. Конъюгированные белки или гетеропротеины классифицируются по характеру их протезной группы:

  • Нуклеопротеиды: нуклеиновые кислоты.
  • Липопротеины: фосфолипиды, холестерин и триглицериды.
  • Металлопротеины: группа состоит из металлов.
  • Хромопротеины: это белки, конъюгированные с хромофорной группой (окрашенное вещество, содержащее металл).
  • Гликопротеины: группа состоит из углеводов.
  • Фосфопротеины: белки, конъюгированные с радикалом, содержащим фосфат, отличным от нуклеиновой кислоты или фосфолипида.

Источники белка растительного происхождения, такие как бобовые, имеют более низкое качество чем белки животного происхождения, потому что они представляют менее важные аминокислоты, что компенсируется подходящей смесью обоих.

Взрослый должен употреблять белка в соответствии с образом жизни, то есть, чем больше физической активности, тем потребуется больше источников белка чем сидячих.

В пожилом возрасте, все еще выглядящим противоречиво, нет необходимости в более низком потреблении белка, но рекомендуется увеличить их количество, потому что на этом этапе очень важно регенерировать ткани. Кроме того, мы должны учитывать возможное появление хронических заболеваний, которые могут деградировать белки.

Здесь мы расскажем вам, какие продукты являются лучшими источниками белка:

Продукты с животными белками

  • Яйца: это хороший источник белка, потому что он содержит альбумин превосходного качества, так как он содержит большое количество незаменимых аминокислот.
  • Рыба (лосось, сельдь, тунец, треска, форель …).
  • Молоко.
  • Молочные продукты, сыр или йогурт.
  • Красное мясо, индейка, вырезка и курица.

Эти продукты содержат белки с большим количеством незаменимых аминокислот (те, которые не могут быть синтезированы организмом, поэтому они должны поступать вместе с пищей).

Продукты с белками растительного происхождения

  • Бобовые (чечевица, фасоль, нут, горох …) должны быть дополнены другими продуктами, такими как картофель или рис.
  • Зеленые листовые овощи (капуста, шпинат …).
  • Орехи, такие как фисташки или миндаль (при условии, что они не жареные и не соленые).
  • Сейтан, киноа, соевые бобы, морские водоросли.

Переваривание белков обычно инициируется в желудке, когда пепсиноген превращается в пепсин под действием соляной кислоты и продолжается действием трипсина и химотрипсина в кишечнике.

Диетические белки деградируют до все более мелких пептидов, и до аминокислот и их производных, которые абсорбируются желудочно-кишечным эпителием. Скорость поглощения отдельных аминокислот сильно зависит от источника белка. Например, переваримость многих аминокислот у людей различается между соевым белком и молочным белком и между отдельными молочными белками, такими как бета-лактоглобулин и казеин.

Для молочных белков приблизительно 50% потребляемого белка переваривается в желудке или тонкой кишке, а 90% уже переваривается, когда проглоченная пища достигает подвздошной кишки.
Помимо своей роли в синтезе белка, аминокислоты также являются важным источником питания азота. Белки, как и углеводы, содержат четыре килокалории на грамм, тогда как липиды содержат девять ккал. Спирты — семь ккал. Аминокислоты могут быть превращены в глюкозу посредством процесса, называемого глюконеогенезом.

Белки в зависимости от химического строения делят на простые и сложные. Простые белки при гидролизе распадаются только на аминокислоты. При гидролизе сложных белков наряду с аминокислотами образуется вещество небелковой природы – простетическая группа. Классификация простых белков основана на их растворимости.

Альбумины – водорастворимые белки с высокой гидрофильностью, выпадают в осадок при 100%-ом насыщении сульфатом аммония. Это группа схожих белков плазмы крови с молекулярной массой около 40-70 кДа, содержат много глутаминовой кислоты и поэтому имеют кислые свойства и высокий отрицательный заряд при физиологических рН. Легко адсорбируют полярные и неполярные молекулы, являются, белком-транспортером в крови для многих веществ, в первую очередь для билирубина и длинноцепочечных жирных кислот. К этим белкам относятся белок куриного яйца, белки зародыша семян злаковых и бобовых культур. Альбумины содержат все незаменимые аминокислоты.

Глобулины – растворяются в солевых растворах, чаще всего для извлечения глобулинов используют 2 –10%-ый раствор хлорида натрия. Они осаждаются 50%-ым раствором сульфата аммония. Это группа разнообразных белков плазмы крови с молекулярной массой 100-150 и более кДа, слабокислые или нейтральные . Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, Белки семян бобовых и масличных культур в основном представлены глобулинами; легумин – гороха и чечевицы, фазеолин – фасоли; глицин – соевых бобов. Они составляют почти половину белков крови человека, определяют иммунные свойства организма (иммуноглобулины), свертываемость крови (протромбин, фибриноген), участвуют в переносе железа к тканям и других процессах.

Многие альбумины и глобулины обладают ферментативным действием.

Проламины . Эта группа белков характерна исключительно для семян злаков. Характерной особенностью проламинов является растворимость в 60–80% водном растворе этанола, в то время как все остальные простые белки в этих условиях обычно выпадают в осадок. Эти белки содержат значительные количества пролина и глютаминовой кислот . Лизина они не содержат или содержат его в следовых количествах. Хорошо изучены проламины пшеницы – глиадины, ячменя – гордеин, кукурузы – зеин. Проламины – это комплексы белков различающиеся по составу и молекулярной массе.

Глутелины находятся, как правило, с проламинами. Эти белки тоже содержат значительные количества глютаминовой кислот , а значит относятся к кислым белкам. Растворяются они в щелочах (чаще 0,2%-ым NaOH). Глутелины не однородные белки, а смеси разных белков со сходными свойствами. Наиболее исследованы глутелин пшеницы, орезенин риса.

Глутенин и глиадин пшеницы образуют комплекс, который называют клейковиной. Клейковина муки влияет на структурно-механические свойства теста, а следовательно на качество хлеба.

Протамины – самые низкомолекулярные белки. Встречаются эти белки в молоках рыб. На 2/3 эти белки состоят из аргинина, поэтому имеют основной характер. Протамины не содержат серы.

Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20–30%.Гистоны – содержаться в хромосомах клеточных ядер, они участвуют в стабилизации пространственной структуры ДНК. Из растворов их осаждают аммиаком.